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Abstract. An analytic model of charge-carrier kinetics in a disordered hopping system accounting
for the possibility of jumps to non-nearest hopping neighbours is formulated. The model is applied
to the analysis of charge-carrier energy relaxation at both low and finite temperatures. Carrier jumps
to distant hopping neighbours are shown to increase the depth of the carrier energy distribution at
both low and finite temperatures, and to cause a shift of the effective transport level to deeper states
at finite temperatures.

1. Introduction

Non-crystalline materials that can be considered as hopping networks are characterized
by a strong disorder in both energy and position of hopping sites [1–4]. This makes it
very difficult to solve the problem analytically or simulate the charge-carrier transport and
recombination in such systems by starting from a one-particle master equation. Consequently,
any analytic approach to this problem is normally based on a specific set of assumptions and/or
simplifications. One of the most common simplifying assumptions is the restriction of carrier
jumps from a given site to just its nearest hopping neighbour [2, 3]. The rate of carrier jumps,
νj (r, E,E

′), from a site of energyE to another site of energyE′ over the distancer is normally
described by the Miller–Abrahams expression [5] as

νj (r, E,E
′) = ν0 exp(−2γ r)×

 exp

(
−E − E

′

kT

)
E > E′

1 E < E′
(1)

whereν0 is the attempt-to-jump frequency,γ the inverse localization radius,T the temperature,
andk the Boltzmann constant. Occurrence of hopping transport implies a weak overlap of
wave-functions of carriers localized at different sites and, therefore, the conditionγ r > 1 is
fulfilled for most pairs of hopping sites. In such a dilute system each hopping site will have
just one nearest hopping neighbour, i.e. another hopping site whose hopping parameteru:

u = 2γ r +


E − E′
kT

E > E′

0 E < E′
(2)

has a minimum value amongst those of all available states. All other states have higher values
of u and, given the exponential dependence of the jump rate on the hopping parameter, the
rate of jumps to more distant neighbours is normally neglected in comparison with that to the
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nearest neighbour. Although this simplification looks quite reasonable for a dilute hopping
system, it might be too rough for a more condensed network.

In the present paper we develop an analytic method to account for carrier jumps from a
given site to an arbitrary site in the neighbourhood. Both low- and finite-temperature conditions
are considered. This method is applied to the problem of energy relaxation of charge carriers
injected into a disordered hopping system. Comparing the energy distributions of localized
carriers calculated with different numbers of hopping neighbours taken into consideration
allows an estimate to be made of the relative contributions to the relaxation process of jumps to
more distant sites. Analysis of carrier energy relaxation also reveals the effect of non-nearest-
neighbour jumps on the energy position of the effective transport level [6].

2. Carrier jumps to distant hopping neighbours

Before an equilibrium energy distribution of carriers over hopping sites is established, most
carriers are localized on currently metastable sites (MS), and the energy distribution of the
carriers follows the energy distribution of the density of metastable states (DMS),gd(E, t)

[7, 8]. A state is referred to as currently metastable if a carrier that arrived at this state at a
time t ′ < t has a high probability of still being in this state at a given timet . In other words,
a state is metastable at a timet if it has no hopping neighbours accessible for carrier jumps
within this time. At the initial time,t = 0, when carriers are excited all sites are metastable
and the DMS is equal to the total density of states (DOS). At longer times, evolution of the
DMS energy distribution is governed by the probability of carrier jumps from states of a given
energy. In the following we consider a completely random spatial distribution of states and
calculate the jump probability and, concomitantly, the DMS distribution, taking into account
carrier jumps to all neighbouring sites. We start our consideration with the low-temperature
conditions.

2.1. Low-temperature energy relaxation

At low temperatures only carrier jumps to deeper states are possible. The probability,pi(r, E),
for a trap with energyE to havei deeper states at a distance less thanr is determined by the
Poisson distribution as

pi(r, E) =
[

4
3πr

3Nd(E)
]i

i!
exp

[
−4

3
πr3Nd(E)

]
(3)

whereNd(E) is the total density of states with energy belowE:

Nd(E) =
∫ ∞
E

dE′ g(E′). (4)

These deeper states around a site with energyE can be ordered and numbered according to
the distance from a given localized state to this site. The nearest state will be referred to as
the first neighbour(i = 1), the next-nearest state will be the second neighbour(i = 2), etc.
Using equation (3) one can easily obtain the probability density,wi(r, E), for a trap with the
fixed energyE to have theith neighbour at the distancer:

wi(r, E) = 4πr2Nd(E)

[
4
3πr

3Nd(E)
]i−1

(i − 1)!
exp

[
−4

3
πr3Nd(E)

]
. (5)

The probability,P(r, t), that a carrier does not make a jump from the trap into a localized state
over the distancer up to the timet is also given by the Poisson distribution:

P(r, t) = exp
[−ν0t exp(−2γ r)

]
. (6)
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Combining equations (5) and (6) and integrating over coordinates yields the probability
Pi(E, t) that a carrier made no jumps from the state to theith neighbour up to the timet :

Pi(E, t) =
3
[

4
3πNd(E)

]i
(i − 1)!

∫ ∞
0

dr r3i−1 exp

[
−4

3
πr3Nd(E)− ν0t exp(−2γ r)

]
. (7)

A carrier remains in the metastable trap if it makes no jump to any neighbour. Since
carrier jumps to different neighbours should be considered as independent events, the prob-
ability, P(E, t), of finding a carrier at the timet still in a metastable trap at energyE is given
by the product of allPi(E, t):

P(E, t) =
∞∏
i=1

3
[

4
3πNd(E)

]i
(i − 1)!

∫ ∞
0

dr r3i−1 exp

[
−4

3
πr3Nd(E)− ν0t exp(−2γ r)

]
. (8)

Energy distributions of both the DMS and the density of carriers localized in hopping sites,
ρ(E, t), are determined by the functionP(E, t) as

gd(E, t) = g(E)P (E, t) ρ(E) = N0

Nt
g(E)P (E, t) (9)

whereNt is the total density of hopping sites andN0 is the total density of carriers. Note that
equation (8) can be rewritten using a dimensionless distancez, introduced by normalizing the
distancer with respect to the localization radius,z = 2γ r, as

P(E, t) =
∞∏
i=1

3

(i − 1)!

[
πNd(E)

6γ 3

]i ∫ ∞
0

dz z3i−1 exp

[
−πNd(E)z

3

6γ 3
− ν0t exp(−z)

]
(10)

implying that the behaviour of the functionP(E, t) is governed by only two parameters:
Nd/γ

3 andν0. At long times,ν0t � 1, equation (10) can be simplified using the following
approximation for the double-exponential term in the integrands of this equation:

exp
[−ν0t exp(−z)] ' { 0 z < zd(t)

1 z > zd(t)
zd(t) = ln(ν0t). (11)

Substituting equation (11) into equation (10) and integrating yields

P(E, t) =
∞∏
i=1

{
1− exp

[
−πNd(E)

6γ 3
[ln(ν0t)]

3

] ∞∑
l=i

1

l!

[
πNd(E)

6γ 3
[ln(ν0t)]

3

]l}
. (12)

Equation (12) shows that the low-temperature occupational probability proves to be auniversal
function

P(y) =
∞∏
i=1

[
1− exp(−y)

∞∑
l=i

yl

l!

]
(13)

of asingleparameter

y = πNd(E)

6γ 3
[ln(ν0t)]

3 (14)

that accounts for both the energy and time dependencies of the probability for a given localized
state to be a metastable trap. The functionP(y) is plotted in figure 1 with different numbers of
hopping neighbours taken into consideration. Aty � 1, which corresponds to large energies
and/or short times, the probabilityP(y) is close to being independent of the number,imax , of
hopping neighbours taken into account. However, this number strongly affects the probability
for a state to remain metastable aty > 0.5, i.e. at longer times and lower energies. Note that
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Figure 1. The localized-state occupational probability,P , as a function of the universal parameter
y with different numbers of hopping neighbours taken into account.

the contribution to this probability of jumps to the second-nearest hopping neighbours is larger
than the contribution of jumps to all other neighbours.

Energy relaxation of carriers in a disordered hopping system is often described by means
of a time-dependent demarcation energy,Ed(t), that splits the DOS distribution into currently
shallow,E < Ed(t), and currently deep,E > Ed(t), states [6, 9]. A natural definition of such
a demarcation energy, in terms of the probability defined above, is

P [Ed(t), t ] = 1

2
. (15)

Use of the parametery allows rewriting equation (15) as

P(yd) = 1

2
(16)

whereyd is the value ofy that relates the demarcation energy and the time as defined by
equation (14). Thisyd is again auniversalparameter; it depends neither upon the DOS
distribution nor upon the total density of hopping states. Solving equations (16) and (13)
yieldsyd = ln 2 = 0.693 for imax = 1, yd = 0.573 for imax = 2, yd = 0.559 for imax = 3,
andyd = 0.557 forimax = 100.

We illustrate the temporal evolution of the DMS for an exponential:

g(E) = Nt

E0
exp

(
− E
E0

)
(17)

and for a modified Gaussian DOS distribution:

g(E) = 2
Nt

E0

E

E0
exp

(
−E

2

E2
0

)
(18)

which are typical for inorganic and organic disordered materials, respectively. In both cases
Nt is the total density of states andE0 the characteristic energy of a distribution. Substituting
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Figure 2. Comparison of energy distributions of the density of occupied metastable states at low
and at finite temperatures for hopping systems with an exponential DOS function atν0t = 109.
The DMS distributions are calculated for the values ofimax indicated.

equations (17) and (18) into equations (4) and (14) yields the following time dependencies of
the demarcation energy:

Ed(t) = E0 ln

(
πNt

6ydγ 3

)
+ 3E0 ln [ln(ν0t)] (19)

for the exponential DOS distribution and

Ed(t) = E0

√
ln

(
πNt

6ydγ 3

)
+ 3 ln[ln(ν0t)] (20)

for the modified Gaussian DOS function. For an exponential DOS distribution, jumps to distant
hopping neighbours change the value of a downward shift of the demarcation energy [6, 10]
which is formed within the initial time domain of relaxation,ν0t ∼ 1, and remains constant
afterwards. For a Gaussian DOS distribution the density of deeper states, available for carrier
downward jumps, decreases with energy much faster than for an exponential DOS function.
Therefore, the additional shift of the demarcation energy decreases with time and the effect
of distant jumps is less important for such DOS functions. Energy distributions of the DMS,
presented in figure 2 for a selection ofimax-values, are calculated from equations (13) and
(14) for the exponential DOS distribution. Beyond the nearest-neighbour hops, contributions
of jumps to the second-nearest neighbours(i = 2) are dominant, with the result that the
curves plotted withimax = 2 are very similar to those withimax = 100. Comparison of the
curves calculated for different numbersimax proves that distant jumps of carriers mostly affect
the density of carriers above the demarcation energy with the latter being shifted to deeper
states. This downward shift, governed by the value ofγ , is established early in the relaxation
process and it either remains constant at longer times as predicted by equation (19) for the
exponential DOS distribution or decreases with time as described by equation (20) for the
modified Gaussian DOS function.
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2.2. Energy relaxation at finite temperatures

At a finite temperature both upward and downward carrier jumps are possible and the jump
rate depends upon both the distance between hopping sites and the energy difference between
them as described by equation (1). Under these conditions it is convenient to arrange hop-
ping neighbours of a given site of energyE according to increasing value of their hopping
parameters. A state that has the smallest hopping parameter will be referred to as the first
neighbour(i = 1), a state that has the second-smallest one will be called the second neighbour
(i = 2), etc. Using equation (2) one can write the average number of hopping neighbours,
n(u,E), whose hopping parameters are less thanu, around a state of energyE, as

n(u,E) = πu3

6γ 3

[∫ ∞
E

dE′ g(E′) +
∫ E

E−kT u
dE′ g(E′)

(
1− E − E

′

kT u

)3
]
. (21)

The probability to findi hopping neighbours with hopping parameters less thanu around this
state,pi(u,E), is then described by the Poisson distribution of probabilities

pi(u,E) = [n(u,E)]i

i!
exp[−n(u,E)] . (22)

Repeating for the case of finite temperature the procedure that was used in section 2.1 to derive
equation (10) from equation (3), one obtains

P(E, t) =
∞∏
i=1

1

(i − 1)!

∫ ∞
0

du
∂n(u,E)

∂u
[n(u,E)]i−1 exp

[−n(u,E)− ν0t exp(−u)]. (23)

Equation (23) allows a simplification similar to what has been done in equation (10). Using
equation (11), withu replacingz, in the integrands of equation (23) yields

P(E, t) =
∞∏
i=1

(
1− exp{−n [ln(ν0t), E]}

∞∑
l=i

1

l!
{n [ln(ν0t, E)]}l

)
. (24)

Equation (24) also has the universal form of equation (13) with the variabley being now
associated with the density of hopping neighbours accessible for carrier jumps at finite temp-
eratures:

y = n [ln(ν0t), E] = π

6γ 3
[ln(ν0t)]

3

[∫ ∞
E

dE′ g(E′)

+
∫ E

E−kT ln(ν0t)

dE′ g(E′)
(

1− E − E′
kT ln(ν0t)

)3]
. (25)

The effect of carrier jumps to distant hopping neighbours on the energy relaxation at
finite temperatures is illustrated in figures 2 and 3. Figure 2 compares energy distributions
of localized carriers calculated atT = 0 and at a finite temperature. Although increasing
temperature enhances the relaxation, the effect of distant jumps is much less sensitive to
the temperature, with the result that the additional downward shift is practically temperature
independent. This additional shift is still formed at short times of relaxation and remains
constant at longer times as is again shown in figure 3. In other words, taking more hopping
neighbours into consideration leads to a time-independent downward shift of the demarcation
energy and to a lower density of MS traps remaining around and aboveEd(t).

Since carrier jumps to distant neighbours play an important role only at relatively short
times, they may lead to a faster drift and diffusion only within a limited initial time interval after
the pulse of non-equilibrium carrier generation. At longer times, most carriers make jumps
to nearest hopping neighbours, and hops to distant ones no longer contribute significantly to
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Figure 3. Energy distributions of the density of metastable states at a finite temperature for hopping
systems with an exponential DOS function for two different times. The DMS distributions are
calculated for the values ofimax indicated.

the transport characteristics. Therefore, carrier jumps to distant neighbours may affect time
dependencies of the carrier-packet mean position and the packet spreading at short times, while
at longer times this effect is limited to the appearance of simple numerical factors. The authors
plan to consider this problem quantitatively in the future.

Most carriers start energy relaxation by making downward jumps and, therefore, the
effect of distant hopping neighbours at short times is similar to that under the low-temperature
conditions. At longer times, carriers trapped by currently deep traps will be released mostly
due to upward jumps to shallower states and, correspondingly, the value of the demarcation
parameteryd is controlled by the second, temperature-dependent, term on the right-hand side
of equation (25). Evaluation of this term for an exponential DOS distribution and use of
equation (16) yields the following expression for the long-time asymptote of the demarcation
energy at finite temperatures:

Ed(t) = E0 ln

[
3Nt
γ 3yd

(
E0

kT

)3
]

+ kT ln(ν0t). (26)

This result implies the occurrence of an effective transport level that plays the role of the
mobility edge in a hopping system [6]. The energy position of the transport level shifts down
to deeper states as the number of allowed hopping neighbours increases. At finite temperatures,
the time dependence of the demarcation energy is much less sensitive to the DOS distribution
than at low temperatures. Since the main contribution to the second integral in equation (25)
comes from energies close to the lower bound of integration, this integral can be estimated as∫ E

E−kT ln(ν0t)

dE′ g(E′)
(

1− E − E′
kT ln(ν0t)

)3

' E0g [E − kT ln(ν0t)− Es ] (27)

whereEs is the energy difference between the lower bound of integration and the maximum
of the integrand. Using this approximation in equations (25) and (16) yields a demarcation
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energy which contains a time-independentEt , which is the energy of the transport level:
Ed(t) = Et + kT ln(ν0t). At finite temperatures it is the energy of the transport level rather
than the form of theEd(t) function that depends upon the specific choice of DOS distribution.

All of the above results are obtained under the assumption of completely uncorrelated
and random energies and positions of localized states. However, there are experimental facts
that imply an important role of correlation between energies and positions of nearby hopping
neighbours in processes of carrier transport and recombination [11–13]. These correlations
normally manifest themselves as long-range potential fluctuations in addition to the short-range
energy disorder. Such correlations may also affect the energy relaxation of excited carriers.
Under such conditions, ‘homogeneous’ carrier thermalization within a disordered system of
hopping sites is accompanied by carrier flow from regions of higher potential energy down
into areas of lower energy within the potential landscape, with the result that the equilibrium
distribution of carriers will be mesoscopically non-uniform. Investigations along these lines
are being undertaken by the present authors.

3. Conclusions

Jumps to distant hopping neighbours increase the rate of carrier energy relaxation moderately
in a positionally and energetically disordered hopping system. At low temperatures, this
increase is manifested as an additional time-independent downward shift of the carrier energy
distribution in systems with exponential energy distributions of the DOS. If the DOS decreases
with energy faster than an exponential function, the additional downward shift formed within
the initial time domain of relaxation decreases and becomes less important at longer times.
At finite temperatures, distant-neighbour jumps affect the energy of the effective transport
level, which shifts to deeper states with increasing number of hopping neighbours available
for carrier jumps. In general, the results of the present study prove that models which neglect
carrier jumps to distant neighbours in disordered hopping systems will be sufficiently accurate
for most purposes.

Acknowledgments

VIA acknowledges a fellowship from the K U Leuven. This work was supported by the Fonds
voor Wetenschappelijk Onderzoek-Vlaanderen.

References

[1] Mott N F and Davis E A 1979Electronic Processes in Non-Crystalline Materials2nd edn (Oxford: Clarendon)
[2] Shklovskii B I and Efros A L 1984Electronic Properties of Doped Semiconductors(Berlin: Springer)
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